
 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 1/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Medical image processing as a service

Best Practice Guide

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 2/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Contents:

1. Basic idea ... 4

2. Our approach .. 4

3. Building blocks .. 6

3.1. NVIDIA Clara Train SDK .. 6
3.1.1. AI-Assisted Annotation ... 6
3.1.2. Clara Training Framework ... 7

3.2. Frontend .. 8
3.2.1. 3D Slicer .. 8
3.2.2. API for AIAA clients ... 9
3.2.3. Slicer add-on ... 10

3.3. Backend ... 16
3.3.1. Cluster part ... 16

3.3.1.1. Singularity container with Clara .. 16
3.3.1.2. Clara Training Framework ... 18

Preparing the data ... 18
Models ... 18
Training Workflow ... 19
Validation Workflow .. 22
Bring your components (BYOC) ... 22

3.3.1.3. Cluster setup for the AIAA backend .. 23

4. References .. 24

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 3/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

List of abbreviations:
MRI Magnetic Resonance Imaging

CT Computed Tomography

DL Deep Learning

GPU Graphics Processing Unit

AI Artificial Intelligence

HPC High Performance Computing

SDK Software Development Kit

SSH Secure Shell

AIAA AI-Assisted Annotation

MONAI Medical Open Network for AI

MMAR Medical Model Archive

BYOC Bring Your Components

HTTP Hypertext Transfer Protocol

VTK Visualization Toolkit

ITK Insight Toolkit

CTK The Common Toolkit

CUDA Compute Unified Device Architecture

DICOM Digital Imaging and Communications in Medicine

FDA Food and Drug Administration

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 4/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

1. Basic idea

Medical image processing can help to find and understand irregularities in the human body.
It can detect or even predict diseases. As a data source, Magnetic Resonance Imaging (MRI)
or Computed Tomography (CT) is often used. The current state-of-the-art in medical image
processing and analysis is in machine learning and, more specifically, in deep learning (DL)
and the use of deep neural networks [1,2,3,4]. DL methods can reduce the time to high-quality
medical diagnosis and thus improve healthcare in general.
Since deep learning approaches hold the state-of-the-art in medical image processing and
analysis, the aim was to develop a user-friendly solution for medical doctors that would allow
to use the DL algorithms and provide an automatic tissue segmentation from medical images.
Before any capable DL algorithm is trained, a large amount of data and computing power is
needed. This is especially true if you train the models from scratch. Such models, e.g., for
performing the 3D image segmentation, usually combine many labelled datasets with training
on multiple GPUs to provide models of desired quality and in a reasonable time. Therefore,
the idea in this project was (i) to provide a service that would use the state-of-the-art
algorithms for automatic segmentation of desired tissues as an AI-based annotation service
and (ii) collect the data after the automatic segmentation and validation by medical doctors
and provide an HPC based training of new models or enhance the existing models by fine-
tunning them and use the new or improved models again in the step (i). In such a way a
complex, but a useful and user-friendly concept for medical image processing and analysis is
being created.

2. Our approach

The solution that we have created consists of several building blocks that provide the desired
functionality. The whole idea is depicted in Fig. 1. Two main parts can be distinguished there.
One runs at a medical doctor's site in a local hospital, and the other operates in our facility at
IT4Innovations National Supercomputing Center.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 5/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Fig. 1 – The main concept of the tool for medical image processing and analysis

The part at the local hospital is represented by a frontend that mediates the interaction
between the doctor and the data. A software representing this part should allow the user to
load the data, view them in a raw form and provide access to the computational resources
that will process the images and send the results back. The hardware equipment the viewer
runs on can therefore be lightweight since all the computation is provided remotely. For
medical doctors, such as radiologists, this tool must have a similar environment to the one
they are used to in their regular practice. We have chosen an open-source 3D Slicer [5] to
serve as the viewer with expected capability and to develop the necessary extension for
accessing the backend part. More details regarding the viewer and its modifications needed
for the communication with the backend part are described in section 3.2.
The backend part that provides the computational power and other required features is held
at IT4Innovations National Supercomputing Center. The main idea here is to allow training of
deep learning (DL) models for automatic tissue segmentation and then provide easy use of
the models for DL inference. This twofold nature led us to the utilization of various High-
Performance Computing (HPC) resources. As shown in Fig. 1, we use GPU compute nodes for
training and a GPU based visualization server to provide model inference using AI-Assisted
annotation. The reason for this is that the training process is a computationally intensive task
that can utilize multiple resources for a long period of time. It can take from hours to days,
depending on the complexity of the trained model and the amount of the training data.
Although the training is an intensive process, it will occur rather occasionally only if a new set
of training data is collected. This is an ideal task for the utilization of cluster resources in the
form of multi-GPU nodes.
On the other hand, the model inference does not require high computing power; it can be
provided in a short time (a matter of minutes) by just a single GPU. The computational
resources for the model inference should be quickly available. Therefore, we dedicate this
task to the visualization server. Within the IT4Innovation’s infrastructure, several visualization

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 6/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

servers are sparsely used; therefore, such resource is ideal for being used as an on-demand
inference server. The computational part of the concept responsible for model training and
inference should be compatible with both types of resources. A powerful and general tool to
facilitate this task has been found in NVIDIA Clara Train SDK [6]. A more detailed description
of the tool is provided in section 3.1.
Regarding the data sent between the hospital and IT4Innovations, only anonymized image
data in NIFTI format [7] and binary label masks are used. Apart from that, all the connections
are secured by secure encrypted communication (SSH).

3. Building blocks

3.1. NVIDIA Clara Train SDK

We have adopted an available tool of NVIDIA’s Clara Train SDK [6]. It contains several APIs,
such as those for AI-Assisted Annotation (AIAA) and a training framework denoted as Clara
Training Framework for the DL-based model training. The Clara Train SDK is in version 4.0,
and it is solely PyTorch-based compared to a previous version which was TensorFlow based.
The Clara Training Framework uses an open-source Medical Open Network for AI (MONAI)
framework [8]. MONAI has been specifically denoted to deep learning in healthcare imaging.
Therefore, besides the standard Clara tools proven from previous versions, such as Medical
Model Archive (MMAR) and Bring Your Components (BYOC), Clara combines these with the
components of MONAI.
As for the MMAR, this concept helps the user organize and configure models and data and
covers the whole development cycle of the model. Several MMARs have been made available
to give developers a reference. These have also been used in our concept, and we have
extended their capabilities to better match the needs of medical doctors.
The BYOC is a way to write your components in Python language and then use them in the
training/inference pipeline. Components from MONAI can also be used here as templates and
then serve within BYOC.

3.1.1. AI-Assisted Annotation

Clara’s AI-Assisted Annotation (AIAA) is a client-server-based architecture that provides C++
or Python client API. In this way, many medical image viewers can be interfaced with to
provide AIAA services offered by the server. Based on the pre-loaded models on the server,
the AIAA can make automatic segmentation of specific tissues and share the results with the
interfaced viewer on the client's side. It can significantly reduce medical doctors' workload. If

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 7/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

combined with the viewer's capabilities in terms of editing and post-processing the resulting
masks, it can speed up the creation of high-quality annotated datasets that can be used to
train robust DL algorithms.
Since this solution is given to researchers and developers by NVIDIA, the prerequisite to use
it is to have an NVIDIA GPU card available.
A schematic view of the AIAA's architecture is in Fig. 2. Communication between the server
and client runs over the HTTP protocol. To add the necessary security level in the
communication between the client and the server, we encapsulate the connection within
secure encrypted communication (SSH).

Fig. 2 – Overview of AI-Assisted Annotation (AIAA) concept

The key features in the AIAA tool are the possibilities to use segmentation, annotation, or
deep grow methods, which help in labelling the data sets.

3.1.2. Clara Training Framework

The training framework is part of the Clara Train SDK. It is based on Python and provides a
fast way to create deep learning models for medical data processing. Users can start with pre-
trained models built by NVIDIA. Those models are packed in the so-called Medical Model
Archive (MMAR) format. This format helps to start the process of creating the models and
reduces the time to model if the pre-trained models are used, and the user just needs to fine-

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 8/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

tune them on his/her data. The MMAR format also brings enough freedom, e.g., users can
extend several segmented labels in a model quite easily or add different data
transformations. In Fig. 3, it is shown how the training framework is built on top of the
PyTorch engine and the MONAI deep learning framework.

Fig. 3 – Clara Training Framework overview [9]

3.2. Frontend

In our medical image processing concept, we have a frontend solution represented by capable
software that provides viewing and processing of the data, see Fig. 1. We have selected 3D
Slicer as a viewer that can easily be extended to an AIAA client and bring additional
functionality to medical doctors, see Fig. 2. A detailed description of 3D Slicer is in the
following section.

3.2.1. 3D Slicer

3D Slicer is a free open-source and multi-platform software dedicated to medical image
computing [5]. It supports various visualizations and provides advanced functionalities for
image segmentation and registration in various application domains. To some extent, it is like
a radiology workstation, mainly in terms of visualizations. Still, in contrast to that, 3D Slicer
offers a higher level of extensibility and independence on specific hardware. On the other
hand, 3D Slicer is not an FDA-approved software, so it cannot be used other than a clinical
research application.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 9/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

3D Slicer can serve as a programming platform within which new algorithms and methods for
medical image analysis can be developed. Such approaches can be developed as simple
concepts and can be fully integrated into the user interface in the form of extensions. 3D
Slicer builds on a modular and layered architecture. It uses languages (C++, Python,
JavaScript) and libraries (VTK, ITK, CTK) that provide high-level functionality and abstraction.
The work environment of 3D Slicer is depicted in Fig. 4.

Fig. 4 – 3D Slicer working environment

We have selected Slicer mainly for the accessibility of advanced functions and easy
extensibility that can be reached with Python programming. Although the core functionalities
of Slicer are written in C++, APIs of core classes are accessible via Python using Python
wrapping mechanisms. This interconnection with the Python language makes it possible to
develop functional extensions in a simplified development process. The extensions can also
use Python-based libraries and combine them with the functionality of Slicer.

3.2.2. API for AIAA clients

NVIDIA's AIAA provides two Client APIs, either in C++ or in Python. Both provide the same
functionality and can be used to integrate AIAA Client in medical image viewers. We describe
the Python version of the API here, but it also describes a C++ version since the implemented
functionality is the same. The Client APIs are available at [10].

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 10/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Python version of the AIAA Client API is written in a single Python file client_api.py, and it can
be found at [11]. The script contains the main AIAAClient class, which defines methods to
connect to the AIAA server. You can also list available models pre-loaded on the server and
thus know what type of segmentation you can call and what tissue it applies to. Regarding
the processing operations that can be called on the data, there are four main methods:

• Segmentation (segmentation(self, model, image_in, image_out, session_id=None)) –
this method performs automatic segmentation by using MMAR segmentation type of
model (in Slicer it corresponds to Auto-segmentation option).

• Dextr3d (dextr3d(self, model, point_set, image_in, image_out, pad=20,
roi_size='128x128x128', pre_process=True, session_id=None)) – this method performs
segmentation from boundary points by using MMAR annotation type of model (in
Slicer it corresponds to Segment from boundary points option).

• Deepgrow (deep grow(self, model, foreground, background, image_in, image_out,
current_point=None, spatial_size=None, session_id=None)) – this method performs
segmentation based on user selection of foreground and background points. It can
provide either 2D or 3D segmentation, and it uses deep grow models from MMAR
model types (in Slicer, it corresponds to the Deepgrow option).

• Inference (inference(self, model, params, image_in, image_out, session_id=None)) –
this method provides generic inference for given input image and model.

Besides the mentioned methods for the model inference, API offers several other tools to
process the data before or after the inference. There is a tool to, e.g., resample the image,
convert the 3D mask to polygons, update polygons, etc.

3.2.3. Slicer add-on

Official add-ons for Slicer can be downloaded and installed using the Slicer’s Extension
manager. The regular AIAA add-on provided by NVIDIA can also be installed this way. By
searching for NvidiaAIAssistedAnnotation in the Extension Manager, you can install the AIAA
extension.

Standard AIAA add-on uses the Python version of AIAA API (section 3.2.2) and provides client
connection to AIAA server running at some visible IP address in the network. In terms of data
exchange that is copied between the client and the server, raw image data is sent for
processing to the server, and the result in the form of the image binary mask is sent back. The
standard situation is depicted in Fig. 2.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 11/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Our extension to this Slicer add-on broadens its possibilities so that a user can securely ask
for computational resources on the HPC cluster directly and run there the Clara AIAA server
to provide model inference. To connect to the cluster resources, the frontend user must have
a regular user account on the IT4Innovations infrastructure, and a project has to be assigned
to the user with some computational resources available. If so, then the necessary conditions
are met, and the user can use the cluster for the assisted annotation. The situation is depicted
in Fig. 5, where the typical data flow to/from the inference server is denoted by blue colour.

Fig. 5 – Distinction of different data flows between frontend (viewer) part and the backend

Since we also want to have the ability to use the cluster resources for model training, we
needed to create a way how to upload the data from the viewer to some specific path on the
cluster. Such data must represent the validated dataset suitable for training. It means a raw
image and a correct binary mask validated by a doctor must be sent to the cluster. In Fig. 5,
this is denoted by the red data path. Again, we use the user credentials to create a secured
way to transfer the data to the cluster.

The AIAA add-on for Slicer is completely Python-based. We use Paramiko and scp modules to
provide the functionality to establish and manage the connection to the cluster. These
modules are not part of the regular Python distribution in Slicer and need to be installed as
an extra. We have included the installation process of the modules as a part of the AIAA add-
on setting. The AIAA add-on itself is installed in the following way. First, the add-on needs to
be added via Application Settings, see Fig. 6.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 12/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Fig. 6 – Access to Application Settings in Slicer

A user from the Application Settings window needs to add the path to the modified version
of the AIAA extension from within the Modules section in the settings, see Fig. 7.

Fig. 7 – Adding the path to a user extension in the modules tab of Slicer’s setting

After restarting the 3D Slicer, the user can find in the Application Settings the new item in the
list named AIAA, see Fig. 8. A specific setting to access the cluster is brought to the user and
needs to be filled in properly. Also, if some required Python module is missing (Paramiko,
scp), the Python Interactor prints out the message “Please install required dependencies to
use AIAA extension!” and the Install dependency button becomes active (otherwise greyed
out if no dependency is missing). After installing the required Python modules, Slicer needs
to be restarted again to make the changes effective. If Slicer is started and no dependencies
must be installed, Python Interactor displays the message “AIAA extension has been
activated!”.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 13/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Fig. 8 – Settings of the AIAA extension in Slicer

When the AIAA add-on is added as a module, the user can find this tool in the Segment Editor
of the application, see the lower right part in Fig. 9. To use the AIAA add-on, it is necessary to
first load some image data by using the DATA or DCM buttons, see the top left part in Fig. 9,
before entering the Segment Editor.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 14/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Fig. 9 – Slicer’s Segment Editor with the AIAA extension

After loading some image data, entering the Segment Editor, and activating the AIAA tool, the
user gets the possibility to submit the AIAA session with Clara at the backend on the HPC
cluster and connect to it, see Fig. 10. The AIAA tool has three different modes to provide the
user with assistance in medical image segmentation. The modes correspond to different types
of pre-trained models as defined by MMAR. Users can train and use models for fully
automatic segmentation of a tissue. Such model corresponds to the MMAR type denoted as
segmentation. The other type of model provides segmentation based on boundary points.
Such a model is marked as an annotation model in the MMAR. Then the user needs to select
the proper model for the structure of interest and then specify input points near the edges of
the structure, one on each side, therefore six points in total. The last type of model is specified
as deep grow in MMAR type, and it performs segmentation based on user selection of
foreground and background points. Users can either use 2D or 3D deep grow segmentation.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 15/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

The 2D segmentation operates slice by slice over added points. The 3D segmentation operates
in all three dimensions based on the foreground and background points added.

The first two segmentation modes in the AIAA module, the auto-segmentation and segment
from boundary points, are organ-specific, meaning that to properly segment a tissue, a pre-
trained model for segmentation of such tissue needs to be used. The deep grow segmentation
is an option based on a general pre-trained model capable to segment any tissue of the user
selection. The last option in the AIAA module represents the extension that allows the
compression of the image data and resulting segmentation mask and sends it securely to the
HPC cluster. The user is notified about the status of a data sending operation. The data are
stored in the specific project folder on the cluster where it can be used by the training
framework of the Clara train SDK that runs on the cluster in a singularity container where it
can utilize allocated GPU resources for training or fine-tuning of models.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 16/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Fig. 10 – Slicer’s Segment Editor with the AIAA extension

3.3. Backend

3.3.1. Cluster part

3.3.1.1. Singularity container with Clara

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 17/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Singularity [12] provides virtualization at the level of the operating system. This technique is
also known as containerization. Containers can be easily moved from system to system and
thus bring reproducibility to a new level. One of the main uses of Singularity as software for
running containers was a need to bring reproducibility to scientific computing represented by
High-Performance Computing (HPC).

To run Clara Training Framework on the HPC cluster, it is first necessary to create a Singularity
container. To use Singularity that is available as a module on all the IT4Innovations’ clusters,
one needs to use the following command:

Clara Train SDK 4.0 is distributed as a Docker container. It is possible to build a Singularity
container directly from the Docker repository as:

To run the container with Clara Training Framework on a pre-allocated computational
resource with GPU accelerators, it is necessary to execute:

To access directories on the HPC cluster from within the Singularity, the directories must be
mounted. To mount a directory, use the option -B <source_dir>:<mount_dir>. We mount a
working directory as /workspace and a directory with CUDA from the core system to a
specific /usr/local/cuda folder in the Singularity. Mounting CUDA solves possible driver-
related errors in Singularity.

If the execution of the Clara container is successful, you will see Singularity in the terminal.

Inside the /workspace folder, you can check that the data are correctly mounted.

It is recommended to create two folders in the working directory:

• data – to store datasets,

• mmars – to store Medical Model Archive (DL models for training).

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 18/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

In the next chapter, the focus is on preparing data and models from MMAR (Medical Model
Archive). We will look at how to download pre-trained models and describe the development
environment that enables training, validating, or bringing your models.

3.3.1.2. Clara Training Framework

This chapter describes the basics of the Clara Training Framework. It provides instructions on
how to prepare your data and how to work with MMARs. Also, descriptions of how to train,
validate and export segmentation or classification model are presented. The section describes
techniques to train deep learning models from scratch or fine-tune already existing pre-
trained models.

Preparing the data

The dataset is separated into training, testing and validation folders. You can split the data
into a 70:20:10 ratio. If the data are in DICOM format or the resolution is not isotropic, you
should use a data converter. The converted data are in NIfTI format, and 1x1x1mm
resolution is used.

The following Clara command converts all DICOM images in a folder:

If you convert images with labels, use the command with -l flag, which uses the nearest
neighbour interpolator to correctly convert label data.

Models

Some pre-trained models are publicly available in NVIDIA NGC Catalog [13]. The models are
used for organ segmentation, annotation and classification based on the state-of-the-art
networks (3D U-Net, AH Net, DenseNet, ResNet, Dextr3D). The models are packaged as
MMARs (Medical Model Archive). Each MMAR contains all the configurations needed to train
the model and scripts needed for model development tasks.

To display the list of available NGC models, use the command below (directly from
Singularity, or the NGC CLI tool can be installed on any standard platform from [14]:

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 19/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

To download selected MMAR (Medical Model Archive) from NGC site use:

The folder structure of MMAR looks as following:

Fig. 12 – Folder structure of MMAR model architecture

Training Workflow

To train the model, open the downloaded MMAR model folder. First, navigate to the config
folder and choose the environment.json file to set up the paths. The example is shown on the
code snippet below. The user should change the following parameters:

• DATA_ROOT – specifies the path to the dataset

• DATASET_JSON – specifies the path to data list (typically called dataset_0.json)

Fig. 13 – Important values in environment.json file

Next, open the script dataset_0.json and modify it. The JSON file describing the data list must
contain paths to all image files. As you can see in the code snippet below, the data are split
into three parts - training, testing and validation. The user should set the number of images
in each of the categories. The user also sets the paths to each volume image and its label. The
pairs include:

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 20/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

• Image – volume image of one patient

• Label – the label corresponds to the ground truth mask

Fig. 14 – Structure of dataset_0.json file

If you want to change the architecture of the network, add more labels, or change parameters
for training, go to the config_train.json file. This training config file defines the configuration
of the training workflow. The config contains three sections: global variables, train, and
validate. The script is used by all below mentioned training commands.

Typical global variables are shown in the code snippet below. On the left image, you can see

an example of defined global variables. You can easily experiment with different training

settings without modifying the config file. The train section defines the components for the

training process, including ‘loss’, ‘optimizer’, ‘model’, ‘metrics’ etc. The part of the file is

shown in code snippets below. On the right, there is an example of a defined model from the

train section. Similarly, the validate section defines the components for the validation

process.

You can also use externally implemented components. For more details, see section Bring

your components.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 21/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Fig. 15 – Setting of config_train.json

Navigate to the command folder and run the script train.sh. An example is shown on the
command below. This script trains the model from scratch with settings specified by the user.
The training runs on a single GPU.

To launch multiple GPU training run the script train_multi_gpu.sh. Such script can be obtained
by simple modification of train_2gpu.sh script provided by NVIDIA.

To continue training from an already existing model, use the script fine-tune.sh. The output
of this command is the same as from the commands above.

When the training is finished, you should see the following files in the model's folder.

• Model.pt – represents the best model.

• Final_model.pt – when the training is complete, this file is written to disk and can be

used for fine-tuning. It is usually NOT the best model.

• Event files – these are TensorBoard events that you can be visualized in the graph.

Export a trained model checkpoint from the model.pt to model.ts.

To monitor the progress of training, run the following command to run TensorBoard
visualization. On the image below Fig. 16, the training accuracy is shown. You can visualize
training loss, validation accuracy etc., in this way.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 22/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Fig. 16 – Tensorboard visualization of training progress

Validation Workflow

After the training is completed, try the validation and inference scripts. For this purpose, the
configuration script config_validation.json is used. The same configuration file is used for both
validation and inference. The validation result files are created in the eval folder of the MMAR
after the use of validate.sh command.

Call the command infer.sh to run inference on the model from Medical Model Archive. Unlike
the validation, for inference, the metric value specified in the configuration file will not be
computed, and no ground truth label is needed. The output of the inference is saved again in
the eval folder.

Bring your components (BYOC)

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 23/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Clara allows researchers to solve problems and innovate by writing their components in a

modular way. Users can write their components in python files and add them to the

train_config.json.

List of components that users can add:

• Transforms that are applied to the input images and labels.

• Model of neural network.

• Loss function.

• Optimizer for finding minimal loss during training.

• Metrics to measure the quality of the model during training.

3.3.1.3. Cluster setup for the AIAA backend
If the Singularity container with Clara Train SDK is prepared (section 3.3.1.1), just two
additional bash scripts need to be set up inside the project folder on the cluster. Both scripts
have to be accessible for the cluster user. The first script, run_clara.sh is submitted as a non-
interactive cluster job and runs the Singularity container. This script is submitted remotely
from the Slicer frontend via Submit button.

Fig. 17 – Content of the run_clara.sh script

The second script, called start_clara_4.sh, is started inside the container. It sets up the
important parameters for the AIAA server, such as CUDA paths, inference engine, etc., and
starts the AIAA server.

 Medical image processing as a service

Petr Strakoš Ph.D

Best Practice Guide

01/12/2021 24/24

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland,
Turkey, the Republic of North Macedonia, Iceland, Montenegro.

Fig. 18 – Content of the start_clara_4.sh script

4. References

[1] Esteva, A., et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1),
24-29. doi:10.1038/s41591-018-0316-z.
[2] Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical
imaging focusing on MRI. Zeitschrift Fur Medizinische Physik, 29(2), 102-127.
doi:10.1016/j.zemedi.2018.11.002.
[3] Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep learning techniques for
medical image segmentation: Achievements and challenges. Journal of Digital Imaging, 32(4),
582-596. doi:10.1007/s10278-019-00227-x.
[4] Sahiner, B., et al. (2019). Deep learning in medical imaging and radiation therapy. Medical
Physics, 46(1), e1-e36. doi:10.1002/mp.13264
[5] Fedorov A., et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging
Network. Magn Reson Imaging. 2012 Nov;30(9):1323-41. PMID: 22770690. PMCID:
PMC3466397.
[6] NVIDIA Clara Imaging. https://developer.nvidia.com/clara-medical-imaging (2020).
[7] NIfTI: Neuroimaging Informatics Technology Initiative. https://nifti.nimh.nih.gov/ (2021).
[8] Project MONAI. https://monai.io/ (2021).
[9] Essential concepts – Clara Train SDK v4.0 documentation. https://docs.nvidia.com/clara
/clara-train-sdk/pt/essential_concepts.html (2021).
[10] GitHub – NVIDIA, ai-assisted-annotation-client. https://github.com/NVIDIA/ai-assisted-
annotation-client (2021).
[11] ai-assisted-annotation-client/client_api.py. https://github.com/NVIDIA/ai-assisted-
annotation-client/blob/master/py_client/client_api.py (2021).
[12] Singularity. https://sylabs.io/singularity/ (2021).
[13] NVIDIA NGC. https://ngc.nvidia.com/catalog (2021).
[14] NGC CLI. https://ngc.nvidia.com/setup/installers/cli (2021).

https://developer.nvidia.com/clara-medical-imaging
https://nifti.nimh.nih.gov/
https://monai.io/
https://docs.nvidia.com/clara/clara-train-sdk/pt/essential_concepts.html
https://docs.nvidia.com/clara/clara-train-sdk/pt/essential_concepts.html
https://github.com/NVIDIA/ai-assisted-annotation-client
https://github.com/NVIDIA/ai-assisted-annotation-client
https://github.com/NVIDIA/ai-assisted-annotation-client/blob/master/py_client/client_api.py
https://github.com/NVIDIA/ai-assisted-annotation-client/blob/master/py_client/client_api.py
https://sylabs.io/singularity/
https://ngc.nvidia.com/catalog
https://ngc.nvidia.com/setup/installers/cli

