
 Medical image processing as a service  

 
Petr Strakoš Ph.D 

 

Best Practice Guide 

 

01/12/2021 1/24 

 
This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria, 
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, 

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland, 
Turkey, the Republic of North Macedonia, Iceland, Montenegro. 

 

 
 
 
 
 
 

Medical image processing as a service 

Best Practice Guide 

  



 Medical image processing as a service  

 
Petr Strakoš Ph.D 

 

Best Practice Guide 

 

01/12/2021 2/24 

 
This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria, 
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, 

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland, 
Turkey, the Republic of North Macedonia, Iceland, Montenegro. 

 

 

Contents: 

1. Basic idea ................................................................................................................. 4 

2. Our approach ............................................................................................................ 4 

3. Building blocks .......................................................................................................... 6 

3.1. NVIDIA Clara Train SDK ................................................................................................ 6 
3.1.1. AI-Assisted Annotation ................................................................................................................... 6 
3.1.2. Clara Training Framework ............................................................................................................... 7 

3.2. Frontend ...................................................................................................................... 8 
3.2.1. 3D Slicer .......................................................................................................................................... 8 
3.2.2. API for AIAA clients ......................................................................................................................... 9 
3.2.3. Slicer add-on ................................................................................................................................. 10 

3.3. Backend ..................................................................................................................... 16 
3.3.1. Cluster part ................................................................................................................................... 16 

3.3.1.1. Singularity container with Clara .......................................................................................... 16 
3.3.1.2. Clara Training Framework ................................................................................................... 18 

Preparing the data ............................................................................................................................. 18 
Models ............................................................................................................................................... 18 
Training Workflow ............................................................................................................................. 19 
Validation Workflow .......................................................................................................................... 22 
Bring your components (BYOC) ......................................................................................................... 22 

3.3.1.3. Cluster setup for the AIAA backend .................................................................................... 23 

4. References .............................................................................................................. 24 
 
  



 Medical image processing as a service  

 
Petr Strakoš Ph.D 

 

Best Practice Guide 

 

01/12/2021 3/24 

 
This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria, 
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, 

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland, 
Turkey, the Republic of North Macedonia, Iceland, Montenegro. 

 

List of abbreviations: 
MRI Magnetic Resonance Imaging 

CT Computed Tomography 

DL Deep Learning 

GPU Graphics Processing Unit 

AI Artificial Intelligence 

HPC High Performance Computing 

SDK Software Development Kit 

SSH Secure Shell 

AIAA AI-Assisted Annotation 

MONAI Medical Open Network for AI 

MMAR Medical Model Archive 

BYOC Bring Your Components 

HTTP Hypertext Transfer Protocol 

VTK Visualization Toolkit 

ITK Insight Toolkit 

CTK The Common Toolkit 

CUDA Compute Unified Device Architecture 

DICOM Digital Imaging and Communications in Medicine 

FDA Food and Drug Administration 
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1. Basic idea 
 
Medical image processing can help to find and understand irregularities in the human body. 
It can detect or even predict diseases. As a data source, Magnetic Resonance Imaging (MRI) 
or Computed Tomography (CT) is often used. The current state-of-the-art in medical image 
processing and analysis is in machine learning and, more specifically, in deep learning (DL) 
and the use of deep neural networks [1,2,3,4]. DL methods can reduce the time to high-quality 
medical diagnosis and thus improve healthcare in general. 
Since deep learning approaches hold the state-of-the-art in medical image processing and 
analysis, the aim was to develop a user-friendly solution for medical doctors that would allow 
to use the DL algorithms and provide an automatic tissue segmentation from medical images. 
Before any capable DL algorithm is trained, a large amount of data and computing power is 
needed. This is especially true if you train the models from scratch. Such models, e.g., for 
performing the 3D image segmentation, usually combine many labelled datasets with training 
on multiple GPUs to provide models of desired quality and in a reasonable time. Therefore, 
the idea in this project was (i) to provide a service that would use the state-of-the-art 
algorithms for automatic segmentation of desired tissues as an AI-based annotation service 
and (ii) collect the data after the automatic segmentation and validation by medical doctors 
and provide an HPC based training of new models or enhance the existing models by fine-
tunning them and use the new or improved models again in the step (i). In such a way a 
complex, but a useful and user-friendly concept for medical image processing and analysis is 
being created. 
 
 
 
 

2. Our approach 
 
The solution that we have created consists of several building blocks that provide the desired 
functionality. The whole idea is depicted in Fig. 1. Two main parts can be distinguished there. 
One runs at a medical doctor's site in a local hospital, and the other operates in our facility at 
IT4Innovations National Supercomputing Center. 
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Fig. 1 – The main concept of the tool for medical image processing and analysis 

 
The part at the local hospital is represented by a frontend that mediates the interaction 
between the doctor and the data. A software representing this part should allow the user to 
load the data, view them in a raw form and provide access to the computational resources 
that will process the images and send the results back. The hardware equipment the viewer 
runs on can therefore be lightweight since all the computation is provided remotely. For 
medical doctors, such as radiologists, this tool must have a similar environment to the one 
they are used to in their regular practice. We have chosen an open-source 3D Slicer [5] to 
serve as the viewer with expected capability and to develop the necessary extension for 
accessing the backend part. More details regarding the viewer and its modifications needed 
for the communication with the backend part are described in section 3.2. 
The backend part that provides the computational power and other required features is held 
at IT4Innovations National Supercomputing Center. The main idea here is to allow training of 
deep learning (DL) models for automatic tissue segmentation and then provide easy use of 
the models for DL inference. This twofold nature led us to the utilization of various High-
Performance Computing (HPC) resources. As shown in Fig. 1, we use GPU compute nodes for 
training and a GPU based visualization server to provide model inference using AI-Assisted 
annotation. The reason for this is that the training process is a computationally intensive task 
that can utilize multiple resources for a long period of time. It can take from hours to days, 
depending on the complexity of the trained model and the amount of the training data. 
Although the training is an intensive process, it will occur rather occasionally only if a new set 
of training data is collected. This is an ideal task for the utilization of cluster resources in the 
form of multi-GPU nodes. 
On the other hand, the model inference does not require high computing power; it can be 
provided in a short time (a matter of minutes) by just a single GPU. The computational 
resources for the model inference should be quickly available. Therefore, we dedicate this 
task to the visualization server. Within the IT4Innovation’s infrastructure, several visualization 
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servers are sparsely used; therefore, such resource is ideal for being used as an on-demand 
inference server. The computational part of the concept responsible for model training and 
inference should be compatible with both types of resources. A powerful and general tool to 
facilitate this task has been found in NVIDIA Clara Train SDK [6]. A more detailed description 
of the tool is provided in section 3.1. 
Regarding the data sent between the hospital and IT4Innovations, only anonymized image 
data in NIFTI format [7] and binary label masks are used. Apart from that, all the connections 
are secured by secure encrypted communication (SSH). 
 
 

3. Building blocks 
 

3.1. NVIDIA Clara Train SDK 
 
We have adopted an available tool of NVIDIA’s Clara Train SDK [6]. It contains several APIs, 
such as those for AI-Assisted Annotation (AIAA) and a training framework denoted as Clara 
Training Framework for the DL-based model training. The Clara Train SDK is in version 4.0, 
and it is solely PyTorch-based compared to a previous version which was TensorFlow based. 
The Clara Training Framework uses an open-source Medical Open Network for AI (MONAI) 
framework [8]. MONAI has been specifically denoted to deep learning in healthcare imaging. 
Therefore, besides the standard Clara tools proven from previous versions, such as Medical 
Model Archive (MMAR) and Bring Your Components (BYOC), Clara combines these with the 
components of MONAI. 
As for the MMAR, this concept helps the user organize and configure models and data and 
covers the whole development cycle of the model. Several MMARs have been made available 
to give developers a reference. These have also been used in our concept, and we have 
extended their capabilities to better match the needs of medical doctors. 
The BYOC is a way to write your components in Python language and then use them in the 
training/inference pipeline. Components from MONAI can also be used here as templates and 
then serve within BYOC. 
 
 

3.1.1. AI-Assisted Annotation 
 
Clara’s AI-Assisted Annotation (AIAA) is a client-server-based architecture that provides C++ 
or Python client API. In this way, many medical image viewers can be interfaced with to 
provide AIAA services offered by the server. Based on the pre-loaded models on the server, 
the AIAA can make automatic segmentation of specific tissues and share the results with the 
interfaced viewer on the client's side. It can significantly reduce medical doctors' workload. If 
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combined with the viewer's capabilities in terms of editing and post-processing the resulting 
masks, it can speed up the creation of high-quality annotated datasets that can be used to 
train robust DL algorithms. 
Since this solution is given to researchers and developers by NVIDIA, the prerequisite to use 
it is to have an NVIDIA GPU card available. 
A schematic view of the AIAA's architecture is in Fig. 2. Communication between the server 
and client runs over the HTTP protocol. To add the necessary security level in the 
communication between the client and the server, we encapsulate the connection within 
secure encrypted communication (SSH). 
 

 
Fig. 2 – Overview of AI-Assisted Annotation (AIAA) concept 

 
The key features in the AIAA tool are the possibilities to use segmentation, annotation, or 
deep grow methods, which help in labelling the data sets. 
 
 

3.1.2. Clara Training Framework 
 
The training framework is part of the Clara Train SDK. It is based on Python and provides a 
fast way to create deep learning models for medical data processing. Users can start with pre-
trained models built by NVIDIA. Those models are packed in the so-called Medical Model 
Archive (MMAR) format. This format helps to start the process of creating the models and 
reduces the time to model if the pre-trained models are used, and the user just needs to fine-
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tune them on his/her data. The MMAR format also brings enough freedom, e.g., users can 
extend several segmented labels in a model quite easily or add different data 
transformations. In Fig. 3, it is shown how the training framework is built on top of the 
PyTorch engine and the MONAI deep learning framework. 
 

 
Fig. 3 – Clara Training Framework overview [9] 

 
 
 

3.2. Frontend 
 
In our medical image processing concept, we have a frontend solution represented by capable 
software that provides viewing and processing of the data, see Fig. 1. We have selected 3D 
Slicer as a viewer that can easily be extended to an AIAA client and bring additional 
functionality to medical doctors, see Fig. 2. A detailed description of 3D Slicer is in the 
following section. 
 
 

3.2.1. 3D Slicer 
 
3D Slicer is a free open-source and multi-platform software dedicated to medical image 
computing [5]. It supports various visualizations and provides advanced functionalities for 
image segmentation and registration in various application domains. To some extent, it is like 
a radiology workstation, mainly in terms of visualizations. Still, in contrast to that, 3D Slicer 
offers a higher level of extensibility and independence on specific hardware. On the other 
hand, 3D Slicer is not an FDA-approved software, so it cannot be used other than a clinical 
research application. 
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3D Slicer can serve as a programming platform within which new algorithms and methods for 
medical image analysis can be developed. Such approaches can be developed as simple 
concepts and can be fully integrated into the user interface in the form of extensions. 3D 
Slicer builds on a modular and layered architecture. It uses languages (C++, Python, 
JavaScript) and libraries (VTK, ITK, CTK) that provide high-level functionality and abstraction. 
The work environment of 3D Slicer is depicted in Fig. 4.  
 

 
Fig. 4 – 3D Slicer working environment 

 
We have selected Slicer mainly for the accessibility of advanced functions and easy 
extensibility that can be reached with Python programming. Although the core functionalities 
of Slicer are written in C++, APIs of core classes are accessible via Python using Python 
wrapping mechanisms. This interconnection with the Python language makes it possible to 
develop functional extensions in a simplified development process. The extensions can also 
use Python-based libraries and combine them with the functionality of Slicer. 
 
 

3.2.2. API for AIAA clients 
 
NVIDIA's AIAA provides two Client APIs, either in C++ or in Python. Both provide the same 
functionality and can be used to integrate AIAA Client in medical image viewers. We describe 
the Python version of the API here, but it also describes a C++ version since the implemented 
functionality is the same. The Client APIs are available at [10]. 



 Medical image processing as a service  

 
Petr Strakoš Ph.D 

 

Best Practice Guide 

 

01/12/2021 10/24 

 
This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 

951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria, 
Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, 

Romania, Slovenia, Spain, Sweden, the United Kingdom, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland, 
Turkey, the Republic of North Macedonia, Iceland, Montenegro. 

 

 
Python version of the AIAA Client API is written in a single Python file client_api.py, and it can 
be found at [11]. The script contains the main AIAAClient class, which defines methods to 
connect to the AIAA server. You can also list available models pre-loaded on the server and 
thus know what type of segmentation you can call and what tissue it applies to. Regarding 
the processing operations that can be called on the data, there are four main methods: 

• Segmentation (segmentation(self, model, image_in, image_out, session_id=None)) – 
this method performs automatic segmentation by using MMAR segmentation type of 
model (in Slicer it corresponds to Auto-segmentation option). 

• Dextr3d (dextr3d(self, model, point_set, image_in, image_out, pad=20, 
roi_size='128x128x128', pre_process=True, session_id=None)) – this method performs 
segmentation from boundary points by using MMAR annotation type of model (in 
Slicer it corresponds to Segment from boundary points option). 

• Deepgrow (deep grow(self, model, foreground, background, image_in, image_out, 
current_point=None, spatial_size=None, session_id=None)) – this method performs 
segmentation based on user selection of foreground and background points. It can 
provide either 2D or 3D segmentation, and it uses deep grow models from MMAR 
model types (in Slicer, it corresponds to the Deepgrow option). 

• Inference (inference(self, model, params, image_in, image_out, session_id=None)) – 
this method provides generic inference for given input image and model. 

 
Besides the mentioned methods for the model inference, API offers several other tools to 
process the data before or after the inference. There is a tool to, e.g., resample the image, 
convert the 3D mask to polygons, update polygons, etc. 
 
 

3.2.3. Slicer add-on  
 
Official add-ons for Slicer can be downloaded and installed using the Slicer’s Extension 
manager. The regular AIAA add-on provided by NVIDIA can also be installed this way. By 
searching for NvidiaAIAssistedAnnotation in the Extension Manager, you can install the AIAA 
extension.  
 
Standard AIAA add-on uses the Python version of AIAA API (section 3.2.2) and provides client 
connection to AIAA server running at some visible IP address in the network. In terms of data 
exchange that is copied between the client and the server, raw image data is sent for 
processing to the server, and the result in the form of the image binary mask is sent back. The 
standard situation is depicted in Fig. 2. 
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Our extension to this Slicer add-on broadens its possibilities so that a user can securely ask 
for computational resources on the HPC cluster directly and run there the Clara AIAA server 
to provide model inference. To connect to the cluster resources, the frontend user must have 
a regular user account on the IT4Innovations infrastructure, and a project has to be assigned 
to the user with some computational resources available. If so, then the necessary conditions 
are met, and the user can use the cluster for the assisted annotation. The situation is depicted 
in Fig. 5, where the typical data flow to/from the inference server is denoted by blue colour. 
 

 
Fig. 5 – Distinction of different data flows between frontend (viewer) part and the backend 

 
Since we also want to have the ability to use the cluster resources for model training, we 
needed to create a way how to upload the data from the viewer to some specific path on the 
cluster. Such data must represent the validated dataset suitable for training. It means a raw 
image and a correct binary mask validated by a doctor must be sent to the cluster. In Fig. 5, 
this is denoted by the red data path. Again, we use the user credentials to create a secured 
way to transfer the data to the cluster. 
 
The AIAA add-on for Slicer is completely Python-based. We use Paramiko and scp modules to 
provide the functionality to establish and manage the connection to the cluster. These 
modules are not part of the regular Python distribution in Slicer and need to be installed as 
an extra. We have included the installation process of the modules as a part of the AIAA add-
on setting. The AIAA add-on itself is installed in the following way. First, the add-on needs to 
be added via Application Settings, see Fig. 6. 
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Fig. 6 – Access to Application Settings in Slicer 

 
A user from the Application Settings window needs to add the path to the modified version 
of the AIAA extension from within the Modules section in the settings, see Fig. 7. 
 

 
Fig. 7 – Adding the path to a user extension in the modules tab of Slicer’s setting 

 
After restarting the 3D Slicer, the user can find in the Application Settings the new item in the 
list named AIAA, see Fig. 8. A specific setting to access the cluster is brought to the user and 
needs to be filled in properly. Also, if some required Python module is missing (Paramiko, 
scp), the Python Interactor prints out the message “Please install required dependencies to 
use AIAA extension!” and the Install dependency button becomes active (otherwise greyed 
out if no dependency is missing). After installing the required Python modules, Slicer needs 
to be restarted again to make the changes effective. If Slicer is started and no dependencies 
must be installed, Python Interactor displays the message “AIAA extension has been 
activated!”. 
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Fig. 8 – Settings of the AIAA extension in Slicer 

 
When the AIAA add-on is added as a module, the user can find this tool in the Segment Editor 
of the application, see the lower right part in Fig. 9. To use the AIAA add-on, it is necessary to 
first load some image data by using the DATA or DCM buttons, see the top left part in Fig. 9, 
before entering the Segment Editor.  
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Fig. 9 – Slicer’s Segment Editor with the AIAA extension 

 
 
After loading some image data, entering the Segment Editor, and activating the AIAA tool, the 
user gets the possibility to submit the AIAA session with Clara at the backend on the HPC 
cluster and connect to it, see Fig. 10. The AIAA tool has three different modes to provide the 
user with assistance in medical image segmentation. The modes correspond to different types 
of pre-trained models as defined by MMAR. Users can train and use models for fully 
automatic segmentation of a tissue. Such model corresponds to the MMAR type denoted as 
segmentation. The other type of model provides segmentation based on boundary points. 
Such a model is marked as an annotation model in the MMAR. Then the user needs to select 
the proper model for the structure of interest and then specify input points near the edges of 
the structure, one on each side, therefore six points in total. The last type of model is specified 
as deep grow in MMAR type, and it performs segmentation based on user selection of 
foreground and background points. Users can either use 2D or 3D deep grow segmentation. 
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The 2D segmentation operates slice by slice over added points. The 3D segmentation operates 
in all three dimensions based on the foreground and background points added. 
 
The first two segmentation modes in the AIAA module, the auto-segmentation and segment 
from boundary points, are organ-specific, meaning that to properly segment a tissue, a pre-
trained model for segmentation of such tissue needs to be used. The deep grow segmentation 
is an option based on a general pre-trained model capable to segment any tissue of the user 
selection. The last option in the AIAA module represents the extension that allows the 
compression of the image data and resulting segmentation mask and sends it securely to the 
HPC cluster. The user is notified about the status of a data sending operation. The data are 
stored in the specific project folder on the cluster where it can be used by the training 
framework of the Clara train SDK that runs on the cluster in a singularity container where it 
can utilize allocated GPU resources for training or fine-tuning of models. 
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Fig. 10 – Slicer’s Segment Editor with the AIAA extension 

 
 
 
 
 

3.3. Backend 
 

3.3.1. Cluster part 
 

3.3.1.1. Singularity container with Clara 
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Singularity [12] provides virtualization at the level of the operating system. This technique is 
also known as containerization. Containers can be easily moved from system to system and 
thus bring reproducibility to a new level. One of the main uses of Singularity as software for 
running containers was a need to bring reproducibility to scientific computing represented by 
High-Performance Computing (HPC). 
 
To run Clara Training Framework on the HPC cluster, it is first necessary to create a Singularity 
container. To use Singularity that is available as a module on all the IT4Innovations’ clusters, 
one needs to use the following command: 
 

 
 
Clara Train SDK 4.0 is distributed as a Docker container. It is possible to build a Singularity 
container directly from the Docker repository as: 
 

 
 
To run the container with Clara Training Framework on a pre-allocated computational 
resource with GPU accelerators, it is necessary to execute: 
 

 
 
To access directories on the HPC cluster from within the Singularity, the directories must be 
mounted. To mount a directory, use the option -B <source_dir>:<mount_dir>. We mount a 
working directory as /workspace and a directory with CUDA from the core system to a 
specific /usr/local/cuda folder in the Singularity. Mounting CUDA solves possible driver-
related errors in Singularity. 
 
If the execution of the Clara container is successful, you will see Singularity in the terminal. 

 
 
Inside the /workspace folder, you can check that the data are correctly mounted. 

 
 
It is recommended to create two folders in the working directory:  

• data – to store datasets, 

• mmars – to store Medical Model Archive (DL models for training). 
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In the next chapter, the focus is on preparing data and models from MMAR (Medical Model 
Archive). We will look at how to download pre-trained models and describe the development 
environment that enables training, validating, or bringing your models. 
 
 

3.3.1.2. Clara Training Framework 
 
This chapter describes the basics of the Clara Training Framework. It provides instructions on 
how to prepare your data and how to work with MMARs. Also, descriptions of how to train, 
validate and export segmentation or classification model are presented. The section describes 
techniques to train deep learning models from scratch or fine-tune already existing pre-
trained models. 
 
Preparing the data 

The dataset is separated into training, testing and validation folders. You can split the data 
into a 70:20:10 ratio. If the data are in DICOM format or the resolution is not isotropic, you 
should use a data converter. The converted data are in NIfTI format, and 1x1x1mm 
resolution is used. 
 
The following Clara command converts all DICOM images in a folder: 
 

 
 
If you convert images with labels, use the command with -l flag, which uses the nearest 
neighbour interpolator to correctly convert label data. 
 

 
 

 

Models 

Some pre-trained models are publicly available in NVIDIA NGC Catalog [13]. The models are 
used for organ segmentation, annotation and classification based on the state-of-the-art 
networks (3D U-Net, AH Net, DenseNet, ResNet, Dextr3D). The models are packaged as 
MMARs (Medical Model Archive). Each MMAR contains all the configurations needed to train 
the model and scripts needed for model development tasks. 
 
To display the list of available NGC models, use the command below (directly from 
Singularity, or the NGC CLI tool can be installed on any standard platform from [14]: 
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To download selected MMAR (Medical Model Archive) from NGC site use: 
 

 
 
The folder structure of MMAR looks as following: 

 
Fig. 12 – Folder structure of MMAR model architecture 

 
Training Workflow 

To train the model, open the downloaded MMAR model folder. First, navigate to the config 
folder and choose the environment.json file to set up the paths. The example is shown on the 
code snippet below. The user should change the following parameters: 

• DATA_ROOT – specifies the path to the dataset 

• DATASET_JSON – specifies the path to data list (typically called dataset_0.json) 

 
Fig. 13 – Important values in environment.json file 

 
Next, open the script dataset_0.json and modify it. The JSON file describing the data list must 
contain paths to all image files. As you can see in the code snippet below, the data are split 
into three parts - training, testing and validation. The user should set the number of images 
in each of the categories. The user also sets the paths to each volume image and its label. The 
pairs include: 
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• Image – volume image of one patient 

• Label – the label corresponds to the ground truth mask 

 
Fig. 14 – Structure of dataset_0.json file 

 
If you want to change the architecture of the network, add more labels, or change parameters 
for training, go to the config_train.json file. This training config file defines the configuration 
of the training workflow. The config contains three sections: global variables, train, and 
validate. The script is used by all below mentioned training commands. 
 
Typical global variables are shown in the code snippet below. On the left image, you can see 

an example of defined global variables. You can easily experiment with different training 

settings without modifying the config file. The train section defines the components for the 

training process, including ‘loss’, ‘optimizer’, ‘model’, ‘metrics’ etc. The part of the file is 

shown in code snippets below. On the right, there is an example of a defined model from the 

train section. Similarly, the validate section defines the components for the validation 

process. 

 

You can also use externally implemented components. For more details, see section Bring 

your components. 
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Fig. 15 – Setting of config_train.json 
 

Navigate to the command folder and run the script train.sh. An example is shown on the 
command below. This script trains the model from scratch with settings specified by the user. 
The training runs on a single GPU. 
 

 
 
To launch multiple GPU training run the script train_multi_gpu.sh. Such script can be obtained 
by simple modification of train_2gpu.sh script provided by NVIDIA.  
 

 
 
To continue training from an already existing model, use the script fine-tune.sh. The output 
of this command is the same as from the commands above. 

 
 
When the training is finished, you should see the following files in the model's folder. 

• Model.pt – represents the best model. 

• Final_model.pt – when the training is complete, this file is written to disk and can be 

used for fine-tuning. It is usually NOT the best model. 

• Event files – these are TensorBoard events that you can be visualized in the graph. 

 
Export a trained model checkpoint from the model.pt to model.ts. 
 

 
 
To monitor the progress of training, run the following command to run TensorBoard 
visualization. On the image below Fig. 16, the training accuracy is shown. You can visualize 
training loss, validation accuracy etc., in this way. 
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Fig. 16 – Tensorboard visualization of training progress 

 

Validation Workflow 

After the training is completed, try the validation and inference scripts. For this purpose, the 
configuration script config_validation.json is used. The same configuration file is used for both 
validation and inference. The validation result files are created in the eval folder of the MMAR 
after the use of validate.sh command. 
 

 
 
Call the command infer.sh to run inference on the model from Medical Model Archive. Unlike 
the validation, for inference, the metric value specified in the configuration file will not be 
computed, and no ground truth label is needed. The output of the inference is saved again in 
the eval folder. 
 

 
 

Bring your components (BYOC) 
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Clara allows researchers to solve problems and innovate by writing their components in a 

modular way. Users can write their components in python files and add them to the 

train_config.json. 

List of components that users can add: 

• Transforms that are applied to the input images and labels. 

• Model of neural network. 

• Loss function. 

• Optimizer for finding minimal loss during training. 

• Metrics to measure the quality of the model during training. 
 
 

3.3.1.3. Cluster setup for the AIAA backend 
If the Singularity container with Clara Train SDK is prepared (section 3.3.1.1), just two 
additional bash scripts need to be set up inside the project folder on the cluster. Both scripts 
have to be accessible for the cluster user. The first script, run_clara.sh is submitted as a non-
interactive cluster job and runs the Singularity container. This script is submitted remotely 
from the Slicer frontend via Submit button. 
 

 
Fig. 17 – Content of the run_clara.sh script 

 
The second script, called start_clara_4.sh, is started inside the container. It sets up the 
important parameters for the AIAA server, such as CUDA paths, inference engine, etc., and 
starts the AIAA server. 
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Fig. 18 – Content of the start_clara_4.sh script 
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